skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Bin-Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop a nonequilibrium increment method in quantum Monte Carlo simulations to obtain the Rényi entanglement entropy of various quantum many-body systems with high efficiency and precision. To demonstrate its power, we show the results on a few important yet difficult (2 + 1) d quantum lattice models, ranging from the Heisenberg quantum antiferromagnet with spontaneous symmetry breaking, the quantum critical point with O(3) conformal field theory (CFT) to the toric code $${{\mathbb{Z}}}_{2}$$ Z 2 topological ordered state and the Kagome $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquid model with frustration and multi-spin interactions. In all these cases, our method either reveals the precise CFT data from the logarithmic correction or extracts the quantum dimension in topological order, from the dominant area law in finite-size scaling, with very large system sizes, controlled errorbars, and minimal computational costs. Our method, therefore, establishes a controlled and practical computation paradigm to obtain the difficult yet important universal properties in highly entangled quantum matter. 
    more » « less
  2. Motivated by recent development of the concept of the disorder operator and its relation with entanglement entropy in bosonic systems, here we show the disorder operator successfully probes many aspects of quantum entanglement in fermionic many-body systems. From both analytical and numerical computations in free and interacting fermion systems in 1D and 2D, we find the disorder operator and the entanglement entropy exhibit similar universal scaling behavior, as a function of the boundary length of the subsystem, but with subtle yet important differences. In 1D they both follow the log(L) scaling behavior with the coefficient determined by the Luttinger parameter for disorder operator, and the conformal central charge for entanglement entropy. In 2D they both show the universal L\log(L) scaling behavior in free and interacting Fermi liquid states, with the coefficients depending on the geometry of the Fermi surfaces. However at a 2D quantum critical point with non-Fermi-liquid state, extra symmetry information is needed in the design of the disorder operator, so as to reveal the critical fluctuations as does the entanglement entropy. Our results demonstrate the fermion disorder operator can be used to probe quantum many-body entanglement related to global symmetry, and provide new tools to explore the still largely unknown territory of highly entangled fermion quantum matter in 2 or higher dimensions. 
    more » « less
  3. Abstract Magic-angle twisted bilayer graphene has recently become a thriving material platform realizing correlated electron phenomena taking place within its topological flat bands. Several numerical and analytical methods have been applied to understand the correlated phases therein, revealing some similarity with the quantum Hall physics. In this work, we provide a Mott-Hubbard perspective for the TBG system. Employing the large-scale density matrix renormalization group on the lattice model containing the projected Coulomb interactions only, we identify a first-order quantum phase transition between the insulating stripe phase and the quantum anomalous Hall state with the Chern number of ±1. Our results not only shed light on the mechanism of the quantum anomalous Hall state discovered at three-quarters filling, but also provide an example of the topological Mott insulator, i.e., the quantum anomalous Hall state in the strong coupling limit. 
    more » « less